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Let I be a prime and k a nice noetherian ring in which 1 is invertible. This paper 
extends the work of Dwyer and Friedlander by defining a mod I’ topological 
K-homology theory for schemes quasiprojective over k, G//:Top(X). It has formal 
properties similar to those of the algebraic K-theory of coherent sheaves, the theory 
usually called K’or G theory. In particular, it is covariant for projective morphisms, 
and satisfies Poincare duality in that G/flTop(X) is isomorphic to the toplogical 
K-cohomology K//:ToP(X) if X is smooth. 

There is a natural transformation from algebraic G-theory 

Q(X) : G/I*“(X) + G//;ToP(X) 

which extends the Dwyer-Friedlander map. The Riemann-Roth theorem says that 
Q(X) is natural for projective morphisms. In particular, there are compatible long 
exact localization sequences for the two theories. The proof of Riemann-Roth 
follows the pattern set in the work of Baum, Fulton, and AMacPherson [3,4], and in 
the work of Gillet [13,14]. For k= C, the complex numbers, a similar theorem 
appears in Gillet’s paper (141, and similar results were known to Baum, Fulron, and 
MacPherson. 

Most of the work to be done lies in making a definition of G/f:Top(X) using the 
etale topology. Once this is done, the usual deformation to the normal cone 
machinery is easily adapted to prove the theorem. This machinery also plays a 
critical role in showing G/lyTop(X) is well-defined. Definitions of etale homology 
theories have all been rather backhanded, so these difficulties are to be expected. 

In the last section I apply the results to compute the algebraic and topological K 
groups of some varieties with a sort of cell structure, such as reductive group 
schemes, homogeneous spaces, and complete rational surfaces. Howard Hiller drew 
my attention to these problems. 

* Author partially supported by NSF Grant IMCS 8102373. 

0022-4049/83/0000-0000/$03.00 0 1983 North-Holland 



88 R. IV. Thomason 

I would like to thank Eric Friedlander for persistently demanding that I write up 
these results. Without Daniel Quillen’s support I could not have finished this or any 
of my papers relating algebraic and topological K-theory. 

Section I 

In this section, I establish conventions and recall some properties of algebraic and 
topological K-theory with supports. These properties may be found in [IS] or [9] or 
easily deduced from results there. See also [14], 52. I will work in terms of the 
homotopy-theoretic spectra K(X) instead of the abelian groups K,(X). These 
groups are just the homotopy groups of K(X), so statements about homotopy 
equivalences between spectra or about homotopy commutative diagrams imply 
corresponding statements about isomorphisms between groups or about 
commutative diagrams of groups. This attitude is analogous to that in homological 
algebra of working in the derived category of chain complexes, rather than with 
their homology groups. See [19] for an extensive discussion. 

1.1. Fix a prime power I”. All spectra here are to be mod iv spectra. Thus, K/I”(X) 
is the usual algebraic K-theory spectrum of X smashed with a mod Iv Moore 
spectrum. Its homotopy groups are the mod I ‘K groups of X. Similarly, K/IVToP(X) 
is the mod I” topological K-theory spectrum of X, denoted Kel(X; Z/f “) by Dwyer- 
Friedlander. If 1=2, pick 1’2 16; if I= 3, pick Iv 29. Then K/I’(X) is a homotopy 
associative and commutative ring spectrum, and all pairings constructed below will 
have the appropriate associativity properties. 

The homotopy inverse limits as I’ increases of the towers v-K/I”(X), 
vu K//vTop(X) are the I-adic spectra K(X);, KT”P(X);. There are I-adic versions of 
all theorems below. In particular, Riemann-Roth is true for the map 

Q : K(X)+K(X);-+KTOyX);. 

I will stick to mod I’ formulations, however. 

1.2. Let k be a regular noetherian ring of 

(1.1) 

finite Krull dimension. Suppose I is 
invertible in k, and that all residue fields of k have bounded etale cohomological 
dimension. All schemes considered below are to be quasiprojective over k. I write 
Xx Z for the fibre product over Spec(k). 

1.3. Consider i: X-, Y a closed immersion of schemes, with Y smooth and quasi- 
projective over k. Note Y is regular. These conditions are assumed for the rest of 
Section 1. 

1.4. Let K/Ii(Y) be homotopy equivalent to the mod I” spectrum associated to the 
Q-category of the exact category of coherent By modules supported on X. The 
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devisage theorem says there are canonical homotopy equivalences with the mod I’ 
spectrum associated to the Q-category of the exact category of coherent /,V modules 

K/I;( Y) = G/I”(X). (1.2) 

There is a natural fibration sequence given by Quillen’s localization theorem: 

K/I;( Y) - K/I “( Y) + K/I ‘( Y - X). (1.3) 

This sequence may in fact be used to define K/Ii(Y). The construction then has the 
following naturality properties. 

Given closed immersions X-X’- Y, there is an induced map 

K/I;(Y) * K/1,&( Y). (1.4) 

A map of pairs (X, Y)+(X’, Y’) which sends Y-X into Y’-X’ induces a map 

K/I&(Y’)-K/l;(Y). (1.5) 

If II: V-Y is a vector bundle over Y, the ‘homotopy property’ of K-theory 
implies that the induced map (1.6) is a homotopy equivalence 

n*:K/I~(Y)~K//,“-lcx,(V). (1.6) 

The map z* is also a homotopy equivalence if rr is a torsor under a vector bundle 
by [IS], $7, 4.1. 

There is a natural external pairing 

K/I~,(Y~)r\K/f;;,(Y,)-K/l;;,.x~(~ x Yz). (1.7) 

This induces various internal pairings. In particular, K/Ii(Y) is a ring spectrum 
and a module spectrum over K/I”(Y). 

1.5. Let K/IiTop (Y) be defined as the canonical functorial homotopy fibre of the 
map of etale K-theory spectra [9] 

K/p ( Y) + K/I “Top( Y) -+K//““‘p(Y-X). (1.8) 

There is a strongly convergent Atiyah-Hirzebruch spectral sequence 

Erq=H;( r; Z/i”(q/2))= nq_,(K/I;ToP( Y)). (1.9) 

Here the Tate-twisted coefficient sheaf is 

Z/I “(q/2) = 
Z/I"(i) q = 2i, 
o 

q odd. 
(1.10) 

If x: V- Y is a vector bundle or a torsor under a vector bundle, the homotopy 
property for etale cohomology implies that 

R * : K/$Op vTop 
U’PK~~,-I~,,W (1.11) 

is a homotopy equivalence. 
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There are natural external pairings analogous to those in (1.7), and similar 
internal pairings of the spectra for topological K-theory with supports. 

Dwyer and Friedlander [9] give a natural transformation g(Y) : K/I”(Y)- 
K/IvTop( Y), As in [lo], this may be realized as a natural transformation of functors 
into the strict category of spectra, not just as a transformation natural up to 
homotopy as in [12]. Then Q induces a natural transformation of fibre sequences 
(1.3) and (1.8), and so a canonical natural map compatible with all the pairings 

Q : K/l;(Y) -* K/fiTop( Y). (1.12) 

1.6. It results easily from [20] that Q induces a homotopy equivalence of the 
localization of the algebraic K-theory spectrum by inverting the Bott element /I: 

Q : K/I;( Y)[p-‘1 z KI’$“~( Y). (1.13) 

This is under the hypothesis that k contains primitive 16th or 9th roots of unity [ if 1 

is 2 or 3, respectively; more precisely, k is to be an algebra over Z[l-t,c]. 
If k contains a primitive [th root of unity for I > 3, the split surjectivity of (1.13) is 

proved in [IO]. This result may be used to simplify some proofs below. 

Section 2 

In this section, I use deformation to the normal cone to construct a Gysin map 
and verify some properties. 

2.1. The conditions and notations of 1.1, 1.2, 1.3 continue to hold. Let j : Y -+ 2 be 
a closed immersion of schemes smooth and quasiprojective over k. 

2.2. If j is the zero section embedding of Y in a vector bundle Z= V(E) over Y, a 

proto-Gysin map 

<j*> : K/l;Top( Y) + K//;Top( V(E)) (2.1) 

is defined as follows. Let AEe xOK/f;( V(E)) be the Thorn class in algebraic 
K-theory, [j&7,] ([4], p. 166). Denote also by 1~ the topological Thorn class 

~(A,E) E noK/ly ‘ToP(V(E)). Then <j,> is cup product with AE composed with the 
restriction map induced by p I 1 : V(E) -* Y x V(E). 

K/I;rop( Y) 
uAE 

- K/f;yp,( Y x V(E)) - K//iTop( V(E)). (2.2) 

2.3. Lemma. The diagram (2.3) commutes up to homotopy. 
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K/l;( Y) -O - K/fiTop( Y) 

il I I (jd 

K/I;(Z) @ - K/fiTop(Z) 

(2.3) 

Proof. Q is a natural transformation with respect to restriction maps, and respects 
the pairings. The lemma follows as the Gysin map j, in algebraic K-theory is given 
by cup product with the Thorn class (e.g. [4], p. 166). 

To see this, note that j, is the composite of the equivalences (1.2) of the two left 
hand members of (2.3) with G/I’(X). 

Consider the diagram (2.4), where the vertical equivalences are the maps (1.2). 

K/I;(Y) 
UAE (Pll)’ 

-K/I;.y(Yx V)- K/l;( I’) 

l- l- l- 
G/I"(X) - G/I'(X x Y) 0’ G/[“(X) 

(2.4) 

The right-hand square in (2.4) commutes by the proof of [IS], $7, 2.1, as 
(p I l)(V) and Xx Y are Tor-independent over Y x V by a calculation similar to 
(2.5) below. The top horizontal map is cup product with the Thorn class. To show it 
is j*, it suffices to show that the bottom horizontal map is the identity on G/I”(X). 

As ,lE is the class of fly, the map G/I’(X) + G/I”(Xx Y) is induced by the functor 
between categories of coherent modules sending the OX module A’ to _&Ok &‘y. I 
claim that A! Or Oy and OX = OX@,, OX are Tor-independent over OXOk Py. This 
is a local question, so I may restrict to an affine neighbourhood. Locally, A’ has a 
resolution by finitely generated projective OX modules, F. +A. The Tors are locally 
the homology of the complex on the left side of (2.5), 

To see that the canonical maps in (2.5) are isomorphisms, note that this is true 
first if each F,, is OX, then if F,, is a finite sum of Ux’s, and finally, if each F, is a 
retract of such a sum. This last condition holds, as each F,, is finitely generated 
projective. The isomorphism (2.5) and the exactness of F. show that the higher Tors 
vanish. 

Thus 1 ok Fy is contained in the subcategory on which (1 I i)* which is induced 
by tensoring with Bx@,.~O~ over Ox@,By. This sends A@/,@, to A?’ by (2.5). 
This shows that the bottom horizontal map is (2.4) is the identity, as required. 

2.4. Returning now to the general situation of 2.1, construct the deformation to the 
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normal cone diagram for j : Y *Z as in [22], $2 or [4], $2. 

z -M(Y,Z)c--;--- 
k; 

V(NY/Z) 
I ko 

(2.6) 

I n 

A’ 

Here j^ is the embedding of Y as the zero section of the normal bundle of the 
embedding j. The maps k, are the closed immersions of Y as Y x {t }. A?( Y, Z) is the 
blow up of Z x A’ along Y x (0). M( Y,Z) is the complement in Q( Y,Z) of the 
blow-up of Z x (01 along Y x (01. The maps k; and ki are closed immersions, The 
squares are Cartesian and Tor-independent (see Appendix). 

There are isomorphisms 

(n _‘(A’ - (O)), Y x (A’ - {O))) r (Z, Y) x (A’ - {O}), 

(r-‘(O), Y x (0)) = (Wry/z), Y). (2.7) 

2.5. Apply K/liTop ( ) to (2.6) to produce (2.8). Here <j*) is the proto-Gysin map 
of 2.2. 

K//;Top( Y) 
k f 

- K/l;y?,( Y x A’) 
k,’ 

- K/l;Top( Y) 

I 

i* I 
, , 
; 

(j;) (2.8) 
1 

K/‘/;‘op(Z) - K/‘/;~j@f( Y, Z)) 
k;* 

- KI’I;~“~( V(Ny& 
k” 0 

The maps kf, kz are homotopy equivalences as they are inverse to a homotopy 
equivalence by (1.11). I claim that k;* and ky are also homotopy equivalences, so 
there is a Gysin map j+, unique up to homotopy, such that (2.8) homotopy 
commutes. My claim follows from Lemma 2.6. 

2.6. Lemma. Let (2.9) be a diagram of closed immersions, with Cartesian squares, 
and with Y, Z, and h4 smooth over k. 

/ 
XxA’- YxA’----A4 

(idpOd j(id.0) 1 k 

X *Y-Z 
j 

(2.9) 
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Assume Y x A’ is purely of codimension d in M, and Y of codimension d in Z. Then 

k*: K/I;?$;, (M) -* K/I;Top(Z) (2.10) 

is a homotopy equivalence. 

Proof. Consider the commutative diagram (2.11) as a diagram of functors from the 
category of triples XC, YG Z to the category of spectra. Do homotopy theory in this 
functor category. 

K/f FTop(Z) * K/l ;?;(z-X> 

K/I YTop(Z) ’ K/I “Top( Z - X) (2.11) 

K,‘[ ~TOP(Z _ y) & K/PTop((Z-X)-(Y-X)) 

The columns of (2.11) are fibre sequences. By the Quetzalcoatl Lemma ([2], Lemma 
1.2; in the stable homotopy version the assumption on x1 is unnecessary) the fibres 
of the top two rows are homotopy equivalent. Thus, the obvious maps form natural 
homotopy fibre sequences 

K/l;TOp (Z)-K/I;Top(Z)+K/I;~;(Z-X). (2.12) 

I may assume X and Y connected. I may assume X= Y is smooth. For if X# Y, 
(M-XxA’, YxA’-XxA’), (Z-X, Y-X), (M, YxA’), and (Z, Y) are all pairs 
of codimension d. By the j-lemma applied to sequences of the form (2.12), I need 
only show that the maps in (2.13) are homotopy equivalences. 

K/l ;y/$(M) - * K/f FTop(Z), 
(2.13) 

K/I;;:&,,(M-XxA’) ----,K/I ;?gz - X). 

To prove (2.13), it suffices to prove Lemma 2.6 when X= Y is smooth. But in this 
case the lemma follows from cohomological purity. For comparing the strongly 
converging spectral sequences (1.9), it suffices to prove that k* is an isomorphism 

HPy.,l(M; Z/f”(i)) A HpY(Z; Z/l”(i)). (2.14) 

By cohomological purity, the Leray spectral sequence computing the groups in 
(2.14) as cohomology of sections of the local cohomology sheaves collapses, 
identifying (2.14) to (2.15) (see [l], XVI 3.7, V 6.4). 

k*:HP-2d(YxA1; Z/f’(i-d))+HP-Zd(Y; Z/l”(i-d)). (2.15) 
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But this map is an isomorphism, 
projection Y x A’ 4 Y according 
([l], xv 2.1). 
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whose inverse is the isomorphism induced by the 
to the homotopy property of etale cohomology 

2.7. Theorem. (Preliminary Riemann-Roth for a closed immersion.) Let 
i : X -+ Y, j : Y -2 be closed immersions of schemes quasiprojective over k, with k as 
in 1.2. Suppose Y and Z are smooth over k. Assume the conditions of 1.1. Then g is 
compatible with the Gysin maps: diagram (2.16) commutes up to homotopy. 

K/f;(Y) @ - K/$‘OP( Y) 

j*j lj. (2.16) 

K/i;(Z) - K/!;Top(Z) 
e 

Proof. Apply Q : K/l”( ) *K/l vTop( ) to the deformation diagram (2.6). This 
produces a map from diagram (2.17) to the topological version (2.8). 

k; 
K/I;(Y) - 

k,’ 
K/I;.*I(YxA’) p K/I;;(Y) 

i* I I Gysin map j; (2.17) 

K/I;(Z) - K&,IW(Y, Z)) - 
k;’ 

kb’ K//it VNY/ZN 

The squares of (2.17) commute as the squares of (2.6) are Tor-independent ([18], 
$7, 2.11). The horizontal maps of (2.17) are all identified to G/I”(X x At)*G/I”(X) 
by (1.2), and so are homotopy equivalences by the homotopy property for G-theory. 

The map Q is natural with respect to k;L, kz, k;*, kA* and respects the proto-Gysin 
map by Lemma 2.3. The commutativity of (2.16) follows by diagram chasing. 

Section 3 

The notations and conventions of 1.1, 1.2, 1.3, and 2.1 remain in force. In this 
section I prove various functorial properties of the Gysin maps for topological 
K-theory. All results of Section 3 follow from the claims of the last paragraph of 
Section 1. A reader granting credence to these claims may proceed directly to 
Section 4. 

3.1. Proposition. In X- Y ---) Z, suppose j : Y * Z is the zero section of a vector 
bundle Z = V(E) over Y. Then the Gysin map and proto-Gysin map of 2.5 and 2.2 
agree up to homotopy 

(j,) = j, : K/tiTop( Y) + K/fiTop(Z). (3.1) 
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Proof. This is so because the deformation diagram (2.6) in this case is isomorphic 
to the trivial diagram (3.2) by [22], 2.17. 

(3.2) 

V(E) k; 
- V(E)xA’+-y--- 

ko 
vu3 

3.2. Proposition. Let (313) be a diagram where the squares are Cartesian, Y, Z, Y’, Z’ 
are smooth over k, and the right-hand square is Tar-independent. The maps i, j, i’, j’ 
are to be closed immersions. 

i ’ ., 
J X’- Y’- Z’ 

I lp I, 
X-Y-Z i j 

Then the diagram (3.4) homotopy commutes. 

,K/l;T”p( Y) ‘* - K/I;T”p(Z) 

P’ I I P ‘f 

K/I;:oP( Y’) F K/l 
JC 

$?P(Zj) 

(3.3) 

(3.4) 

Proof. Consider the deformation diagram (2.6) for XG YG Z. If one omits the A’, 
it is a diagram of schemes over Z x A’. Because Z’ and Y are Tor-independent over 
Z, the deformation diagram for X’G Y’G Z’ is the pullback of (2.6) along the map 
Z’ x A’ -+ Z x A’. This is an easy calculation using Verdier’s construction in [22], §2 
and the basic lemmas on Tor-independence.The case where Z’ is flat over Z is done 
in [22]. 

To carry out the calculations, one must note that Y x (0) and Z’x A’ are Tor- 
independent over Z x A’. This follows from the hypotheses and the isomorphism 

Tor :z1rl(@z8[~], r?^r)=Torf;Z(flz., er)@,,B~[r]. (3.5) 

Considering the pull-back projection map between the deformation diagrams for 
X + Y-Z and for X’ + Y’ + Z’, one sees that it suffices to prove (3.4) for j the zero 
section embedding in a vector bundle and for j*, ji the proto-Gysin maps. As both 
are essentially cup product with the Thorn class, it suffices to show that the Thorn 
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classes agree: 

P*&f(Y/z) = kv, Y/Z’). (3.6) 

But as p’ and i are Tor-independent, there is an isomorphism of bundles on Y’, just 
as when 2’ is flat over Z, 

p*N(Y/Z)zN(Y’/Z’). (3.7) 

Appealing to Tor-independence yet again, p*l NCYIZ) is the Thorn class of p*N( Y/Z) 
by [18], §7, 2.11. So (3.7) implies (3.6). 

3.3. Proposition. (Isotopy principle.) Let j : Y x A’ -+ZxA’ be a closed im- 
mersion of schemes smooth over A ‘. Let j,:Yx{t}+Zx{t} be the fibre over 
{t ) E A’. Then the Gysin maps 

(j,) * : K/Pp( Y) + K/I;T”p(z) (3.8) 
are all homotopic. 

Proof. Consider the Cartesian diagram 

(3.9) 

YXA - ZXA’ - A’ 

The squares are all Tor-independent as Y and Z are flat over k and by appeal to the 
Appendix. Consider the diagram of topological K-theory with supports in Xx A’ 
and Xx {t}, induced by the left square of (3.9). The vertical restriction maps are 
homotopy equivalences, so the result follows by Proposition 3.2 and a diagram 
chase. 

3.4. Proposition. Let i: X-, Y, j : Y-Z, k: Z -+ W be closed immersions with 
Y, Z, W smooth over k. Then the Gysin maps compose up to homotopy 

(kj),zkk,j,:K/I~ToP(Y)*K/I~Top(W). (3.10) 

Proof. Apply K/liToP ( ) to the sides and K/fiyi,( ) to the center column of (3.11). 

Y - YXA’( Y 

k 

(3.11) 
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The vertical maps become Gysin maps, and the horizontal ones become restriction 
maps. As the squares in (3.11) are Cartesian and Tor-independent, the induced 
diagram commutes by Proposition 3.2. The horizontal maps are homotopy 
equivalences, so it suffices to prove that F,j, = (kj),. Thus, I may assume k is a zero 
section embedding in V(E) = W. 

Now consider (3.12), where the bottom vertical maps are zero section embeddings. 

Y ’ YxA’4 Y 

j I , I I / 
Z M(Z, n ’ VWy/z) (3.12) 

F 

i I I 

I 

W) - M(Z Y) XI,,AII( V(E)x A’) - QNYLzOE I n 

The squares are again Cartesian and Tor-independent, and I may reduce to 
showing that k*~?*=(k~?)^),. But these are Gysin maps for zero section embeddings. 
The result follows from Proposition 3.1 and the fact that the Thorn class of a sum of 
vector bundles is the cup product of the Thorn classes. 

3.5. Lemma. Let X+X’- YAZ be closed immersions with Y and Z smooth 
over k. Then the diagram (3.13) of Gysin maps and canonical maps [(1.4)] 
homotopy commutes. 

K/!;Top( Y) - K/l;yp( Y) 

(3.13) 

K/!;T”p(Z) - K/I;pp(Z) 

Proof. Note that both X and X’ are contained in Y. Apply K/IiTop( ) -+ K/Ii?op( ) 

to the deformation diagram (2.6) to produce a map of diagrams (2.8) for X and X’. 
One sees that it suffices to handle the case of the proto-Gysin maps, where the 
assertion is clear. 

3.6. Theorem. Let X -, YL Z be closed immersions with Y and Z smooth over k. 
Let the conditions of 1.1, 1.2, 1.3, and 2.1 hold as usual. Then the Gysin map 

j* : K/fiTop( Y) --* K/fiTop(Z) 

is a homotopy equivalence. 

3.7. Lemma. The assertion of 3.6 holds ifX= Y. 
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Proof. By deformation to the normal bundle, it suffices to do the case where 
Z = V(E) is a vector bundle over Y, and j+ is the proto-Gysin map of the zero section 
embedding. I may reduce to the case where Y is connected, and E is of constant 
rank d. 

Locally on the etale site of Y, cup product with the Thorn class of E induces an 
isomorphism of local etale cohomology sheaves 

Z/I”(i) 
Vi& 

7 &‘( V(E); Z/l’(i+ d)). (3.11) 

Thus by cohomological purity and the local to global Leray spectral sequence, 
cup product with lE induces an isomorphism of the Ez terms of the spectral 

sequences (1.9). 

Efq = H$( Y; iZ/l’(q/2) = HP( Y; UP’(q/2)) 

Ui, 
-_ H;+2d(V(E); Z/l”((q+ 2d)/2))z Ef+2d,q+‘d. (3.15) 

Thus, cup product with AE induces an isomorphism 

If* K/pQ (Y) z rr*K/I;Top( V(E)). (3.16) 

This proves the lemma. Alternatively, 3.7 follows from (1.2), 2.3 and 1.6. 

Proof of Theorem 3.6. Consider the homotopy commutative diagram (3.17), which 
has the homotopy type of a strictly commutative diagram of fibre sequences. 

K/pQ( Y ) 
j* 

’ K/r;ToQ(z> 

! .I I 
K/IFToQ(Y) J+ * K/I tToQ(z) (3.17) 

I .n I 
K/l ;?‘(Y-X)&K/l ;y;(z - X) 

The equivalent strictly commuting diagram is obtained via deformation to the 
normal cone on replacing Z by V(Nyjz) and the horizontal maps by proto-Gysin 
maps (2.2). 

The columns in (3.17) are fibration sequences by (2.12). The Gysin maps ji andjl 
are homotopy equivalences by Lemmas 3.7. The 5lemma implies that j* is a 
homotopy equivalence. 

Section 4 

Throughout this section, the conventions and notations of 1.1, 1.2 remain 
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in force. The results of Sections 2 and 3 allow the definition of a topological 

K-homology theory, with properties analogous to those of the algebraic G-theory. 

The reader granting credence to the claims of 1.6 and willing to assume k contains 

primitive 16th or 9th roots of unity if I= 2 or 3, respectively, may save some trouble 

by defining G/I “‘“P(X) as G/I”(X)[/3-‘1. Then the arguments below define 

f*: G/I”Top(X)-+G/I”Top(X’) for a projective morphism f :X-+X’ in such a way 

that it is not obvious that f* agrees with the f* of algebraic K-theory. The 

Riemann-Roth theorem asserts that they do in fact agree. This gives us two ways to 

compute f*; comparison of the results yields interesting identities. 

As it is, I will often omit tedious elementary arguments for the well-definedness of 

certain maps below when this results from the split surjectivity of (1.13) as proved 

in [lo]. 

4.1. Definition. Let X be affine over k. Fix a closed immersion i:X+A”,. Define 

G//‘ToF(X) = K/f;Top(A,lt). (4.1) 

4 2 Lemma. G/IvTop(X) is independent of the choice of closed immersion into . . 
affine space, up to a canonical equivalence. 

Proof. Let i : X-A:, j :X-AT be two closed immersions. Let X= Spec(A), and 

let the immersions correspond to the presentations of A: 

A~~k[T,,...,T,l/(P;(T)), AZk[S*, . . ..S.]/(qj(S)). (4.2) 

Pick polynomials fi,gi such that S; =h(i(rt, . . . , T,,), T; =g;(St, . . . , S,) in A. The 

presentation (4.3) defines the closed immersion i _!_j : X-AZ’“. 

A Gk[T,, . . . . T,, s,, . . . , sml/(Pi(T)7q,(S)7 Si-_Afi(T)3 7;-gi(S))* (4.3) 

Consider the map of polynomial rings k(Tr, . . . , T,, S1, . . . , S,] -k[T,, . . . , In] which 

sends Tj to Ti and Sj to f;(T). There is a similar map k[Tt, . . . , T,,, S,, . . . , S,] -+ 

W1 , . . . , S,]. These maps fit into a commutative diagram of closed immersions 

A” i A ilj 
x-An+” 

11 
j 

A= 

By Theorem 3.6, the Gysin maps are homotopy equivalences 

K/f;rOp(A”) -=+ K@OP(A” +m) 1_ K#OP(A”). 

(4.4) 

(4.5) 
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These Gysin equivalences do not depend of the choice of the f,(7) and g;(S). For 
if J’(7) is another choice, S;-Ah(T) + (1 - A)h’(r) defines an isotopy of 
immersions A”x A’ *A”+“‘x/+i as A varies over A’. The isotopy principle, 
Proposition 3.3, shows that the Gysin maps for A =0 and L = 1 agree up to 
homotopy. 

The Gysin equivalences satisfy the cocycle condition. If k: X-+AP is a third 
closed immersion, there is a comutative diagram of Gysin equivalences 

K/IiTop( A”) A K/f;ToP(A” + “) 1 K/lx vTop(Arn) 

K/I;Top(A”+p) A K/l (4.6) 

Thus for any choice of representative of G/I YToP(X) and any other possible choice 

K/l;ToP (Aa”), there is a canonical homotopy equivalence between them which is 
unique up to homotopy. 

4.3. If k = 63, the complex numbers, then G/l YTop(X) agrees with the mod I’ version 
of topological K-homology defined by Baum, Fulton, and MacPherson in [A], 3.1. 
This results easily from the usual comparison theorems between the etale and 
classical topologies. Recall that the definition in [4] of the K-homology of X is the 
classical Kp(C”) for a topological closed embedding of X in C”. 

4.4. Lemma. Let X4 W be a closed immersion, W smooth and affine over k. 
There is a canonical homotopy equivalence 

K/l;Top( W) = G/PTop(X). (4.7) 

Proof. Pick a closed immersion W+A”. By Theorem 3.6, the Gysin map is a 
homotopy equivalence 

K/iCOP (W) = K/(2@“). . (4.8) 

The maps (4.8) for different choices of W -+A” agree under the identification of 4.2, 
and so define a canonical map (4.7). This map is even natural with respect to Gysin 
maps of closed immersions of W. 

4.5. Corollary. (Affine Poincare duality.) Let W be smooth and affine over k, 
There is a canonical homotopy equivalence 

K/I vTop( W) = K/lt;Top( W) 2 G/l vTop( W). (4.9) 
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4.6. Theorem. (Affine Riemann-Roth.) Let X be affine over k. Assume 1.1, 1.2 

hold. Then there is a canonical map 

Q : G/P(X) + G/IvToP(X). (4.10) 

For X4 W a closed immersion with W affine and smooth over k, Q is compatible 
with the Q of (1.12) under the maps of (1.2) and (4.7) in that (4.11) is homotopy 
commutative. 

G/I’(X) A G/I”‘OP(X) 

I I ~ . (4*11) 

K/I;(W) ’ - K/IiTop( W) 

Proof. Pick a closed immersion X -+A” and use (4.11) with W= A” to define the Q 

of (4.10). The Q’S for different immersions X -, W agree under the Gysin map equi- 

valences by the preliminary Riemann-Roth theorem, 2.7. 

4.7. Proposition. Let X be affine over k, p :X-X a torsor under a vector bundle E 
on X. Then there is a homotopy equivalence 

p * : G/PTop(X) s G/I YToP(X). (4.12) 

If p’ : 8‘ +X is a torsor under a vector bundle E’, the projection q : 8 x, _?’ -2 is 
a torsor under p*E, and diagram (4.13) commutes up to homotopy. 

G/I “ToP(8 x, 8’) 

(PXP’)’ I Y 
G/I YToP(8) 

G/I “Top(X) 

(4.13) 

Proof. Torsors under E on X are classified by the Zariski cohomology group 

H’(X; E); as E is a coherent sheaf and X is affine, this group vanishes. Thus the 

torsor X has a section and is isomorphic to the vector bundle V(E) over X. There is 

a Grassmanian Y over k with its canonical vector bundle d and a map f: X- Y 

such that E=f *6. Let rr : Y+ Y be an affine resolution of Y, as in [17], 1 .j. Y is 

affine and is a torsor under a vector bundle over Y. Then f *P is a torsor on X, and 

so has a section. Thus f lifts to a map 3: X- Y. 

Pick a closed immersion i :X-AZ. Then ilf: X-A”x p is a closed immersion 

into an affine scheme smooth over k. Let E’ be the pullback of 8 to A” x 9. Then E’ 
restricts to E on X, so V(E’) pulls back to V(E)%X over X. Appealing to the 

homotopy property (1.11) and Lemma 4.4, I obtain a diagram (4.14) of homotopy 

equivalences which defines p *, 
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K/I@;( V(F)) A 
c 

G/I “‘“p( V(E)) 

I 

j ?J* (4.14) 

I i 
K/IiTOP (A,“x P)----- G/PToP(X) 

That p* is independent of the choices made follows from the isotopy principle 3.3 
and 4.6, 4.2, 3.2. Note that the choices off yield isotopic immersions i_l_f by [l 11, 

Lemma 3.3. The independence of p* also follows from the claims of 1.6 and 
Lemma 4.8. 

The.functorial property (4.13) follows similarly from Lemma 4.8 and 1.6, or by 
an easy elementary argument. , 

4.8. Lemma. Let p :X-X be a torsor under a vector bundle with X affine over k. 
Then diagram (4.15) homotopy commutes, where the left p * is the map in G-theory 
induced by the flat map p. 

G/I “(xf) g G/l YToP(8) 

1 P’ (4.15) 

G/f “Tor(X) 

Proof. Consider the analogue of (4.14) for algebraic G-theory. This analogue 
commutes by [ 181, $7, Prop. 2.11. The map ,o maps this analogue to (4.14), forming 
a cubical diagram with (4.14) as the back face and the analogue as the front face. 
The left face of the cube commutes by the usual naturality of ,o. The top and bottom 
faces commute by the preliminary Riemann-Roth theorem of 2.7. The horizontal 
maps on the top and bottom faces are homotopy equivalences. A diagram chase 
shows that the right face of the cube commutes. But this is precisely (4.15). 

4.9. Definition. Let X be quasiprojective over k. Choose an affine resolution 
p : d-X as in [17], 1.5. Such an X is affine over k, and p makes 8 a torsor under a 
vector bundle over X. Define 

GWTop(X) = G/l YTop(X). (4.16) 

Define a map Q(X) up to homotopy 

Q(X) : G/I’(X) + G/IvTop(X) (4.17) 

by Q(X) = Q(X). Then G/f “Top(X) and g(X) are up to homotopy independent of the 
choice of 8. For if p’:8’*X is another affine resolution. Let ??’ be the fibre 
product of X and X’ over X. Then X” is a torsor under a vector bundle over X and 
X‘, and so an affine resolution of X. By Proposition 4.7, there are homotopy 
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equivalences 

G/f “Top(X) + G/I “T”P(8”) + G/PTop(X’). (4.18) 

Further, these equivalences satisfy the cocycle condition analogous to (4.6). Thus 

G/IvTop(X) is defined up to a canonical equivalence. The Q(X) agree under these 

equivalences by Lemma 4.9, so they define a g(X). 

4.10. Proposition. (Duality.) Let i: X -+ W be a closed immersion, W smooth and 
quasiprojective over k. Then there is a canonical homotopy equivalence 

K/l;rop( W) ; G/f “Top(X). (4.19) 

In particular, if X is smooth and quasiprojective over k there is a PoincarP duality 
homotopy equivalence 

K/I YTop(X) = G/I YT”p(X). (4.20) 

Proof. Let p’- W be an affine resolution of W. Let X be the pullback of w along 

X-W. Then X-X is an affine resolution. Appeal now to 4.4 and 4.5, using the 

homotopy property (1.11). 

4.11. Definition. Let i: X+ Y be a closed immersion of schemes quasiprojective 

over k. (I allow X and Y to be singular, convention 1.3 no longer holds.) Define a 

Gysin map 

i* : G/I “T0P(X) + G/I vTop( Y). (4.21) 

Let Y be an affine resolution of Y. Let T:X+ Y be the pull-back of i. Choose a 

closed immersion Y-A”. Define (4.21) to be the canonical change of support map 

analogous to (1.4). 

K/I;Top(A”) - K/I;ToP(An) 

(4.22) 

G/I YToP(X) G/l “ToP( Y) 

Have fun verifying that this is independent of the choices made. 

4.12. Theorem. (Riemann-Roth for a closed immersion.) Let i : X+ Y be a closed 
immersion of schemes quasiprojective over k. (Both X and Y may be singular; 1.1, 

1.2 hold.) Then diagram (4.23) homotopy commutes. 

G/I’(X) g G/f vTop(X) 

i’ 

I I 

i’ (4.23) 

G/I’(Y) 0 G/I “Top( Y) 
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Proof. This follows immediately from Proposition 4.7, Lemma 4.8, Theorem 4.6, 
and the compatibility of Q with the change of support map (4.22). The last com- 
patibility is proved by taking functorial homotopy fibres of the vertical maps in the 
strictly commutative cube (4.24) of Q and restriction maps. 

K/I “(A”) 
Q 

l K/I “Top(A”) 

’ ’ \K,/“T CT,,., 

1 
* K/l “Tof’(A” - J?) 

Q 
* K/IvTOp(A”- 8) 

(1.24) 

4.13. Theorem. (Localization theorem for GI’I”~O~.) Let i:X* Y be a closed 
immersion of schemes quasiprojective over k, (X and Y may be singular; 1. I and 1.2 
hold.) Then there is a ‘localization’ homotopy fibre sequence 

ic 
G/I”Top(X) - G/f “Top( Y) - G/fvToP(Y-X). (4.25) 

This is compatible with the localization fibre sequence of algebraic G-theory in that 
(4.26) has the homotopy type of a strictly commutative diagram, In particular, 
(4.26) homotopy commutes. 

ir 
G/I”(X) p G/I”(Y) p G/f”(Y-X) 

i 

P 

i 

Q 

i* 
I 

Q (4.26) 

G/I “Top(X) - G/f “Top( Y) - G/I “Top( Y - X) 

Proof. Pick a closed immersion Y+Z, Z smooth and quasiprojective over k. The 
fibre sequence (4.25) is identified under the equivalence (4.19) to the fibre sequence 
(2. lo), by the usual compatibilities. The homotopy commutativity of (4.26) follows 
from the obvious naturality properties of Q and Theorem 4.12. 

In fact, the diagram (4.26) is homotopy equivalent to the strictly commutative 
diagram 

K/f;(z) ’ K/f ;(.?) - K/f;_&-x) 

Q I Q 

I 

0 

I 

(4.27) 

K/l;Top(~) - K/I;ToP(Z) - K/$“j(Z’-??) 
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Here Z +Z is an affine resoution, inducing pullback resolutions P -+ Y, x-+-X. The 
left square of (4.27) strictly commutes by narurality of g with respect to change of 
supports, proved by considering a diagram like (4.24) with Z replacing A”. 

4.14. Proposition. Let Y be quasiprojective over k. There is a natural pairing 

(4.28) 

Let I,Q~~ ,..., q” be powers of the class of the bundle p(-1) in TC~K/I’~~P(P~). 
Then cup product with these classes defines a homotopy equivalence 

n G/I"ToP( Y) L G/PToP(P"y). 
I 

(4.29) 

Proof. For Y smooth over k, this follows from Poincare duality 4.10 and the well- 
known analogue of 4.14 for K/IvTop. This analogue reduces by an Atiyah- 
Hirzebruch spectral sequence argument to the corresponding result for etale 
cohomology, [15], VII 2.2.4, 2.2.6. A complete proof requires some fussing with the 
gradings, as in [S], XVIII 1.2. 

For Y singular, pick a closed immersion Y -+ W with W smooth and quasi- 
projective over k. The pairing (4.28) is identified via (4.19) to the external cup 
product 

K/I ~Top(W)~K/l”Top(lpkn)~K/il:~P(iP~). (4.30) 

The equivalence (4.29) results from the smooth case of (4.29) and the fibration 
sequence (4.25). 

Alternatively, 4.14 results from 1.6 and the G-theory analogue of 4.14 in (181, 
$7, 4.3. 

4.15. Definition. Let f: X+ Y be a projective morphism of schemes quasiprojec- 
tive over k. Define f* : G/f VTop(X) -, G/I vTop( Y) as follows. Choose a factorization 
f =pi with i: X+ IF’; a closed immersion and p the canonical projection ip”y -’ Y. 
Define f,=p,. i,. Here i, is the Gysin map of 4.11. The map p* : G/I”Top(P~)-+ 
G/fVToP( Y) is defined as projection on the first factor indexed by 1 = q”, under the 
equivalence (4.29). 

That f* is well-defined follows from an elementary argument, or by 1.6 and 
Theorem 4.16. 

4.16. Theorem. (Riemann-Roth.) Let k satisfy 1.1, 1.2. Let f: X+ Y be aprojec- 
tive morphism of schemes quasiprojective over k. (Both X and Ypossibly singular.) 
Then (4.3 1) homotopy commutes. 
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G/l’(X) -22 G/l YT”P(X) 

f* 

I 

1. 

t 
G/l”(Y)A G/l “Top( Y) 

(4.31) 

Here the left f* is the proper direct image map. 

Proof. It suffices to prove this for a closed immersion Gysin map i,, and for p* of 
the canonical projection. The Gysin case was handled in 4.12. To handle the second 
case, by 4.14 it suffices to prove commutativity for p : iPi -+Spec(k) of the diagram 
obtained from (4.31) by taking homotopy groups no. But this is an easy and 
standard K. calculation. 

For in algebraic G-theory, p* sends the class of a coherent module // on Lb” to the 
class which is the alternating sum of Zariski cohomology sheaves, 

[p*. R] - [R’p*.,/C] + 0.. +(-l)“[R”p*.JI]. 

For .A/ = dlpn, this is the unit class [(.k]. For vi= 0(-i), i= 1,2, . . ..n. it gives 0 as all 
their cohomology sheaves vanish. 

Section 5 

In this section, I use the results of Section 4 to show Q is an isomorphism for some 
schemes with punctured cell decompositions. 

5.1. Theorem. Let k satisfy 1.1, 1.2. Let X be quasiprojective over k. Suppose X is 
filtered by closed subschemes 

@=X_,c_XoC...~X,=X. (5.1) 

Suppose that one of (a), (b), (c) holds. 
(a) Q : n,G/l’(X; - X;_ ,>[p-‘1 -+ n,G/l YToP(X;- Xi_,) is an isomorphism for 

Olizzn and allp. 
(b) Q:I~~G/~~(X;-X~-,)+R~G/I ( , vTop X. -X,_ ,) is an isomorphism for 0 s is n 

and all p 10. 
(c) Q : n,G/l ‘(Xi - Xi- 1) + n,G/l vTop ( Xi-Xi_ 1) is an isomorphism for 0 5 is n 

and all p L P. 
Then, respectively, 
(a) Q : n,G/l '(X)[p-'1 * n,G/l YTop(X) is an isomorphism for all p. 
(b) Q : xpG/l ‘(X) -+ n,G/l VToP(X) is an isomorphism for all p 10. 
(c) Q : rc,G/l”(X) -t n,G/l YToP(X) is an isomorphism for all p L P + n. 

Proof. Prove the conclusion inductively in i for xpG/lYTop(Xi), using the localiza- 
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tion sequence of 4.13 and the j-lemma. The case (a) is easy (and obsolete by 1.6). 

The cases (b) and (c) are harder as JT~Q will not in general be an isomorphism for 

negative p. 

To handle case (b), note that neG/l’(X) = Ge(X)@Z/I’, and that Ge(X,)+ 

Ge(X; -Xi_ t) is surjective as every coherent module on X,-Xi_ 1 extends over 

Xi. Thus neG/I’(X;) + rreG/f “(X, -X;_ t) is surjective. AS noG/r”(X, -Xi_ 1) = 

r~eG/!“~“r(X, -X;_ I), it follows that ~~G/IYTo’(Xi)-~~G/IYToP(X;-X;_ 1) is also 

surjective. These surjectivities allow one to complete the Slemma argument. 

To handle case (c), just keep track of how much ground you lose on each 

induction step. 

5.2. Corollary. Let G be a reductive algebraic group over FP, p # I. Assume 1.1. 

Then 

Q : K/i;(G) *K/l;Top(G) (5.2) 

is an isomorphism for SI n + r - 1, where r is the rank of G and n is the maximal 
length of words in the Weyl group. 

Proof. Filter G by the Bruhat decomposition. Let B be a Bore1 subgroup and let 

X;= u BwB (5.3) 
Nw14r 

be the union of double cosets as w runs over the elements of the Weyl group of 

length at most i. Then the X,-X;_, are disjoint unions of BwB’s. These Schubert 

‘cells’ are isomorphic as schemes to Uk x T x LJ, where T is a maximal torus of G 

and U;, II are unipotent subgroups. The U: and U are affine spaces A’, and T is a 

product of r copies of Ym = A’ - (0). By Friedlander’s comparison of algebraic and 

topological K-groups of a torus ([12], 3.4), Q: K/I,‘(BwB)-+K/I,“~~~(BwB) is an 

isomorphism for s L r - 1. The corollary follows now from case (c) of Theorem 5.1. 

5.3. The topological K-groups K/I:ToP (G) for G reductive over FP are the same as 

the mod I” topological K-groups of the C-form of G as a complex analytic variety. 

These groups are computed in [16]. 

5.4. Corollary. Let X be a quasiprojective scheme over FP, p f 1. Suppose 1.1 

holds. Suppose X has a cell decomposition, i.e. a filtration (5.1) by closed sub- 
schemes with each Xi-Xi_ 1 isomorphic to an affine space A”. Then there is an 
isomorphism for s 2 0 

g : G/I,“(X) 5 G/f,‘ToP(x). (5.4) 

If X is smooth, G may be replaced by K. 

Proof. Immediate from 5.1. 
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5.5. In particular, (5.4) is an isomorphism if X/EP is 
(1) a complete rational surface, 
(2) a projective space P”, 
(3) a flag manifold or Grassmannian, 
(4) G/P, G a reductive algebraic group and P a parabolic subgroup. 

Flag manifolds, Grassmanians, and Pp” have well-known Schubert cell decom- 
positions. They are special cases of case (4), G/P. These homogeneous spaces have a 
cell decomposition as in [7], 3.2, 3.3, 3.13, or [5], 5 and 6 of $1. 

The classification theory of surfaces shows that any complete rational surface 
may be obtained from P2 by a sequence of blow-up and blow-downs. Filtering a 
surface X=X, with Xe the point to be blown-up or the IP’ to be blown-down and 
appealing to 5.1(b), one sees that whether (5.4) is an isomorphism for s?O is not 
affected by such blow-ups and blow-downs. This reduces case (1) to the special case 
of P2. To show that the hypothesis of 5.1(b) is met, consider the localization 
sequence resulting from (4.26) for X0 -+X1 and use the face that G/I!pP(?‘)= 
G/I\IfoP( E$,) = 0. 

The method of Section 5 is a direct extension of the method used by Grothendieck 
to calculate K0 and by Chevalley to calculate the Chow groups of such varieties. 

Appendix. Tor-independence 

A.l. Two schemes X and Y over 2 are said to be Tor-independent over Z if the 
sheaf Tor,!‘z(Ox, By) = 0 for i>O. In particular, this is true if X or Y is flat over 2. 
Tor-independence is a local question. It is a sort of K-theoretic transversality 
condition, as explained in [4]. 

The following lemma is useful in verifying Tor-independence. 

A.2. Lemma. Let (A. 1) be a diagram of schemes, with Cartesian squares. 

W’-W-Y 

(A-1) 

(a) If X and Y are Tor-independent over Z, and x’ and Ware Tor-independent 
over X, then x’ and Y are Tar-independent over 2. 

(b) If X and Y are Tor-independent over Z, and X’ and Y are Tor-independent 
over Z, then x’ and Ware Tor-independent over X. 

Proof. The question is local, so I may assume all schemes in (A.l) are affine. 
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Consider the usual spectral sequence 

(A.21 

By Tor-independence of X and Y over Z, it collapses, yielding an isornorphism 

Torp( Ox,, P;?wJ = Ox@,., Ov) = Torp( Ox,, 6,). 
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